

# Dissolvable Packers: Improving Well Control in High-Pressure Annular Gas Lift Installations

**Eric Sappington, Armon Radfar**, Joe Koessler, Devon Energy **John Daniels**, Matt Pomroy, Brian Kennedy, Shale Oil Tools Matt Young, Flow Co







## Devon Activity in Delaware

- ~2500 operated wells
- 9,000 13,000 ft TVD in Core
  □~2-3 Mile Laterals
- 13 Drilling Rigs running
- ~25 Workover rigs running
- 40 50 Frac Stages per lateral
- 250 H Wells drilled annually
- ~ 390 MBOE
- Hybrid Gas Lift design
- 95:5 Mix of GL and ESP for First AL install depending on GOR, sour gas, and access to Compression





## **Typical Production Decline Curve**





## Artificial Lift Strategy in the Delaware Basin

- Hybrid Gas Lift design
- Natural flow (simul-flow, annulus and tubing)
- Annular Gas Lift ~8 Valves
- Tubing Gas Lift ~ 10 Valves





## The Production Balancing Act

Produce and Kill with Brine

Engineer

- Packer
- Snub in tubing
- Dissolvable Packer

## Production

**Grow Production** 

Offset production decline with new production





#### **Well Control Details**

## Option: Flow Well and Kill with Brine

- Flow well to less than ~300 psi
- Kill well with 10-11ppg brine
- Balance pressure with fluid while running AL Assembly
- Run GL System and Start Production Operations

#### **Benefits:**

- No intervention or Jewelry
- Industry accepted practice
- Peak IP rates up casing
- Reduces risk of early tubing failure from high annular flow rates

- Risk of loading up early due to external takeaway issues
  - Leading to extended downtime with flowback on location due to rig scheduling
- Heavy Brines are costly
- Pressure balancing can be tricky posing risk
- Potential Formation damage from kill fluid
- Delaying high production and releasing reservoir gas pressure while well pressure subsides
- 2 trips to wellsite.









## Option: AS1 X Packer

#### **Well Control Details**

- Set a Mechanical Packer with a Pump Out Plug
- Plug maintains well control
- 10K psi from Below
- Run GL System, Pup Out Plug and Start Production Operations

#### **Benefits:**

- Tested and Trusted method for controlling well
- Can handle all relevant pressure scenarios in field
- Limited kill fluid required
- A safe and reliable option to control the well during GL installs

- Downhole Jewelry is Expensive
- Downhole choke which can erode, corrode, Catch sand or scale up
- Limits accessibility to well if CT cleanout or subsequent ESP setting depth required
- Requires a retrieval/intervention trip
- Limited Setting depth due to retrieval requirement







## Option: Snub in GL System after plug drillout

#### **Well Control Details**

Use Snubbing unit to control pressure while installing Gas Lift system

#### **Benefits:**

- No downhole jewelry in well
- Industry accepted practice

- Complicated to achieve ideal hybrid GLV design
- IM valves pose least risk, but do not allow for tubing clearance
- IM valves also cause reduction of tubing flow rate due to cross-sectional area
- Snubbing units are costly
- Pressure balancing can be tricky posing risk







## Option: Atlas Dissolvable Packer

#### **Well Control Details**

- Magnesium composition leaves only buttons and seal behind
- 8K psi differential rating from below, 275 deg F temperature rating
- Dissolves with normal production flow expedited by chlorides
- At least 72 hr pressure seal dissolved fully in roughly 14 days of production
- Utilized 8.34 Completion fluid for hydrostatic control

#### **Benefits:**

- Well Control with out intervention
- Avoids using kill fluid, and mechanical retrievable packers
- Pump out plug allows for immediate flow through no need to wait on the packer to dissolve
- Saves on NPT by avoiding packer retrieval, fishing, milling
- No need to balance pressure with heavy and expensive brines while running GL System
- Able to be set in higher wellbore inclinations than industry standard packers

- Unable to be retrieved if improperly set
- Non-reusable
- Fear of well control risk from early dissolving
- Requires immediate workover activity to take advantage of efficiency gains











### ATLAS DISSOLVABLE PACKER ™

#### **BUSINESS DRIVER**

> Install artificial lift equipment earlier in packer-less applications.

#### TECHNICAL ISSUES

- > **Snubbing-in** tubing is both expensive and risky.
- > Using **kill fluid** requires you to wait until the well dies down to acceptable levels. Also introduces safety risks.
- > Large-bore cast iron plugs leave restrictions and often result in costly milling interventions.



#### SOLUTION

Install artificial lift quickly after clean out, potentially while workover equipment is on location, using the Atlas Dissolvable Packer for well control.

#### VALUE

- > Operationally Efficient: Install artificial lift sooner with fewer logistical headaches.
- > Cost Effective: Less expensive than snubbing or using heavy kill fluids. Eliminates retrieval/milling interventions.
- **Enhance Production:** Convert from natural to artificial flow sooner.





## ATLAS DISSOLVABLE PACKER ™

- ✓ Integral Pump-Out Plug: Creates a robust pressure barrier from below and once activated, enables unrestricted production flow through the packer bore.
- Restriction Free: Both the packer and pump-out plug are designed to fully dissolve during standard production flow, eliminating the need for retrieval.
- ✓ Versatile Setting Options: Can be set using either wireline or hydraulic methods with standard setting tools for flexible operation.
- ✓ **Accelerated Dissolution:** Magnesium alloy components dissolve gradually but can be expedited with exposure to chlorides for faster performance.

| Casing Size<br>(in) | Casing Weight<br>(lb/ft) | Plug O.D.<br>(in) | Packer Bore I.D. (in)<br>(after expending plug) | Pressure Rating<br>Below (psi) | Pressure Rating Above<br>(psi/screw) Brass/Steel | Temperature<br>Rating (°F) |
|---------------------|--------------------------|-------------------|-------------------------------------------------|--------------------------------|--------------------------------------------------|----------------------------|
| 4.5                 | 11.6-13.5                | 3.700             | 1.500                                           |                                | 1,025/1,500                                      | 275                        |
| 16                  | 17-20                    | 4.500             |                                                 | 8,000                          | 575/835                                          |                            |
| 5.5                 | 20-26                    | 4.400             | 1.900                                           |                                |                                                  |                            |





## **Initial Pilot Trials**

| Field Test Matrix                                                              |                                                 |        |   |   |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------|--------|---|---|--|--|--|
| Probability                                                                    | High                                            |        |   |   |  |  |  |
|                                                                                | Medium                                          |        |   |   |  |  |  |
|                                                                                | Low                                             |        |   |   |  |  |  |
| Our Phased test aproach allows us to sysematically test the performance limits |                                                 | 1      | 2 | 3 |  |  |  |
| of the A                                                                       | ATLAS Packer while mitigating Risk and Exposure | Impact |   |   |  |  |  |

| Phased and Monitored Field Trial            |                                                                   |        |       |  |  |  |
|---------------------------------------------|-------------------------------------------------------------------|--------|-------|--|--|--|
| Phase                                       | Objective                                                         | Risk   | Wells |  |  |  |
| First Install                               | Low Risk well, prove that ATLAS can<br>Hold pressure and Dissolve | Low    | 1     |  |  |  |
| Typical Gas Lift<br>Install                 | Set ATLAS in Vertical while running GL Valves                     | Low    | 10    |  |  |  |
| Improved Well<br>Design, Earlier<br>Install | Hold Larger Pressures in Excess of 4000 psi DP                    | Medium | 19    |  |  |  |
| Improved Well<br>Design, Lower<br>Set Point | Set ATLAS in deviated sections running GL Valves                  | High   | 30    |  |  |  |
|                                             | 60                                                                |        |       |  |  |  |



## **Continued Pilot Trials**

 Confirmed Plug holds and Pumps out as expected with Gauge Data





2000 psi DP across Packer

1000 psi DP across Packer





## **Pilot Conclusions**

- >60 successful installs in 9 months
- Monitored many Jobs with Downhole gauges
- Confirmed Packer dissolution by attempting to Tag after well flow.
- Proved that the ATLAS Packer can perform as advertised.
- On Average these plugs have been holding for 85 hours before we pump out plug and initiate flow.
- Average DP is 1500 psi
- The Max time we have tested is 600 hours, with 2500 psi DP
- Max Pressure we have tested to is 4500 psi DP which we held for 240 hours
- Majority of ATLAS Packers have been set at 45 deg or more.













