Gas Lifting on TLP's

2/7/08

Nora Ghobrial

Shell is pursuing gas lift projects on most of it's TLP's in the GOM (Ram/Powell 1st TLP to Gas Lift – Dec 2005)

- State of the Portfolio
- Deepwater Gas Lift: What's different vs. the Shelf?
- Safety Issues
- Project Design & Execution Considerations
 - Well Design
 - Facility Design
 - Operational Readiness

Gas Lift/Artificial Lift - Deepwater GOM

GOM TLP/SS AL Portfolio within 5 yrs

Global AL Portfolio

BUSINESS DIMENSIONS OF ARTIFICIAL LIFT

	TLP/Subsea	Type AL	Start AL	AL Now	AL w/in 5yrs
			Year	#Wells	#Wells
Ursa	TLP	GL	2008	0	8
Mars	TLP	GL	2008	0	12
Princess	Subsea	GL	2009	0	1
Ursa North	Subsea	GL	2009	0	1
	Subsea	Caison ESP	2010/11	0	1
Brutus	TLP	GL	2008	0	1
Ram/Powell	TLP	GL	2005	1	2
Total TLP/SS AL			99	1	26
% GOM TLP/SS			100%	1%	26%

Lots of Deepwater Reserves tied to AL

Are we identifying all of the artificial lift candidates?

Significant Achievements/Upcoming Challenges

Ursa, Mars, and Brutus

- GL Teams established/working/staffed
- Holistic Artificial Lift Designs Complete (hub-level crossdiscipline tech design effort leveraging Global AL team)
- Topside Design Basis, Well Design Basis, Compressor Selection Approved on all assets
- New Technology being leveraged on all assets
- First Tubing Punch w/GL Packoff installed at Ursa TLP

Ram/Powell

- 1st Deepwater asset to implement lift
- 1st Approved GL HSE Case Supplement
- Topside Design Guideline Created
- Completion Design Guideline Created
- DW GL Training Course Created
- Deepwater GL Operating Philosophy/Procedures Established

New Technologhy

- CTR/Funding Approved for R&D of High Reliability GL equipment
- High Reliability Checks near Shell Qualification
- Hydraulic VR Checks to be installed

Achievements

Challenges

- Implementing GL on Ursa, Mars, and Brutus
- Retrofitting existing TLP Wells for Lift (Tubing Punch w/GL Packoff)
- High Reliability GL Equipment Shell Qualified & Ready to Install
- Operating Large scale HP (3000psi) Gas Lift
- Regionalizing GL Approach/Creating Standards
- Paradigm shift (to install lift right off the bat)
- Interventions (need experienced GL wireline hands getting rare)

Deepwater Gas Lift What's Different vs. the Shelf?

Floating Platform

- Wells held by Production Riser Tensioners (PRT's)
- Relative movement of Wellhead affects tree hookup

Deep set SCSSV's

- Keep all valves below SCSSV
- Higher GL system pressures needed

Fewer Casing Strings

Crews unaccustomed to Gas Lift

Higher Intervention Costs

Larger Tubing

Higher GL injection rates needed

Higher HSE exposure

- Personnel (100+ POB)
- Environment (Higher rates= large spill/release potential)
- Assets (\$Billion+)

VS.

Integrated Solution – Need a Holistic Approach/Design

Safety Issues Major Hazard is Loss of Containment

Loss of Containment = Major Hazard

- -200-1000 Mcf of gas inventory in a single well
 - Equivalent to the entire topsides inventory!
- Jet fire from release of inventory could compromise PRT's
 - "Dropping" of wells could result in insufficient time to abandon platform!
 - PRT Waterspray system being evaluated

• Complicating Factors

- Blowing down casing inventory = not practical
- Reducing csg inventory using an ASCSSV or Dual Stringnot practical
 - Failure rates, Small csg diameters & risk of hoop stress fatigue
- Single barrier exists at the casing valve → New: VR Check
- Only one riser outside of Production Casing
- Maintaining Tubing, Casing, PRT, and Tree Integrity is Key

Safety Hazards, Threats, & Consequences

Loss of Containment = Top Event

Hazard Threats

- Sustained/Excessive Casing Pressure
- Seal Failure
- Compromised Tubing Integrity
- Reservoir Souring
- Corrosion (H2S, CO2, H2O Content)
- Fatigue/Fretting
- Acid Jobs
- Impacts/Dropped Objects
- Bleed down of Annulus
- Well Collision/Riser Impact

Hazard Consequences

- Fire
- Explosion
- Loss of Stability

Well Design Studies and Standards: Deepwater Gas Lift

Materials & Corrosion Assessment

- Tbg, Csg, & Tree material tolerances to H2S, CO2, & H2O understood
- Injection Gas Quality Standards Set
- New well materials selected to be fit-for-purpose

Deepwater Guidelines for Gas Lift Completion Systems

- Tubing Integrity Matrix dictates when High Reliability GL equipment is needed
- Dictates when GLV's allowed above SCSSV
- Quality control & testing standards for equipment set

• Tubing Integrity Testing Standard for Deepwater Gas Lifted Wells

Tubing Integrity testing frequency/procedure

Elastomer Study

 Testing tree seals to determine fit-for-purpose limit when bleeding down annulus to maintain integrity and avoid explosive decompression issues

• Failure Modes & Effects Analysis

Assess well & tree configuration for adequate # of Barriers

Well Design Considerations—TLP Gas Lift

Gas Lift Design

- Design system for full Field/Well Life Cycle (WC & Res Psi)
- Balance minimizing # of GLV's (leak points) with having flexibility in design
- Prefer to keep all GLV's below SCSSV
- Prefer 1.5" GLV's for higher injection rates in big tbg
- Initial Unloading Using High Pressure Nitrogen can avoid need for compressor

• <u>High Reliability GL equipment installed in sour potential environments</u>

- Installed GLM with externally mounted high reliability check valves
- Hydraulically controlled GLV employed

Completion Equipment (minimize interventions)

- Downhole Pressure Gauge
- Fiber Optic Line for Temperature Profile
- Chemical Inj Line to prevent Paraffin Buildup (also 1 MeOH)
- Dual tree barriers required with at least one M2M seal
 - Install Hydraulic VR Check Valve in casing valve
 - Install VR plug in valve for MLTH control line

Model PRT Adjustments

- Starting gas lift requires adjustment to PRT cylinder pressures to maintain target tension
- Consider temperature effects on well system given gas in annulus

Hydraulic VR Check Valve for GL!!!!!! (aka Hydraulic Surface Annular Safety Valve (H-SAS))

- Provides secondary barrier to annulus gas volume!
- Basically, a check valve that goes into the already existing VR profile of the casing valve with hydraulic control that allows annular access (bleed downs)
- Used in the North Sea when ASV fails
- Specifically designed for high rate/high pressure GL
- Step change improvement in safety for the GL project
- Potential to eliminate need for the PRT Waterspray Sys

** Shell is
working with
PTC to modify
this for more
dropped objects
resistance

New Technology Development/Application

High Reliability GL Valve/Orifice

In Progress (see chart)

Example Well Designs

Sweet Well

Sour Potential Well

Facility Design Considerations TLP Gas Lift

• Topside Gas Lift System

- Booster Compressor may be needed if GL sys pressures required are over sales gas psi
- Metering and realtime monitoring/trending of injection rates/pressures
- FCV maintains injection rate at setting even with injection system gas psi fluctuations
- Flexible hose for injection umbilical (be careful of temp effects here)
- ESD Blowdown to Tree (depressures umbilical)
- Allow Manual rapid bleed down of casing
 - Bypass around check valve available
 - Method to recapture gas (route into system vs. flare)

Injection Gas Quality

- Inject Dry Non-Corrosive Gas!!!
- Monitor & maintain injection gas quality per agreed functional specs
 - Moisture analyzers
 - H2S analyzers (on injection gas and production stream of any potential H2S wells)
 - Inspection & Maintenance Routines

• Wellhead Interface

- SDV at the Casing Valve (More reliable vs. Check only)
- Installation of extra valves on wellhead creates moment stresses
- Install support system for extra wellhead assembly
- Provide extra dropped object protection over the casing valve

Topsides - P&ID Cartoon

Operational Readiness Making Our First Deepwater GL Happen!!!

Assigned Operational Readiness Focal Points Early in Project

- One from Shell's Operational Readiness team so learnings could be shared among assets
- One came in from offshore for site specific support
- Provided offshore commissioning support

Developed Deepwater Gas Lift Operations Training

- 2 day offsite course
- Trained all 4 crews
- Covered differences in Deepwater Gas Lift, Safety Issues, New Standards & Equipment, and GL Surveillance & Troubleshooting Techniques

• Operations Manual Developed

- System Operating Procedures (Normal Ops, SI, ESD, etc.)
- Monitoring Injection Gas Quality
- Functional Specs Set including Alarm Points
- Maintenance Procedures/Schedules and Backup Procedures

Operating Philosophy or "Big Rules" (<2 pages)

Outline critical points and expected response concisely

Thanks!!!!

• Any questions?

