

PETROBRAS Deepwater Gas Lift Project

(an overview)

Alcino R. Almeida

- CENPES

- Guilherme A. Peixoto
- UN-BC
- José Eduardo Mendonça
- UN-RIO

Paulo José P. Ribeiro

- EP-CORP

Die de laneiro February 200

- Search for products that will optimize gas lift process in high pressure and high flow rate deepwater subsea wells

- The Deepwater Gas Lift Project is part of a major PETROBRAS Technological Program

- PROCAP 3000 -

Deepwater Gas Lift Project Schedule:

Phase I: Feb, 1999 to Feb, 2005

Phase II: Mar, 2005 to Jul, 2006

- 1 Scenario Studies
- 2 Gas Lift Equipment Development
- 3 Gas Lift Software Development
- 4 Gas Lift Automation

PROCAP 3000

Number of Wells

PROCAP 3000

Flow Rate

■ FLOWING

■ CONTINUOUS GL

□ ESP

Main Oilfield Data:

Datum: - 2500 to - 3200 m

Water Depth: 1000 to 3000 m

Well to Platform distance: 1.5 to 12 km (1 to 7.5 mi)

Oil Specific Gravity: 12 to 30 °API

Bottom Hole Pressure: 250 to 290 bar (3600 to 4200 psi)

Productivity Index: 10 to 100 m³/d/bar (4.5 to 45 bpd/psi)

Formation GOR: 50 to 75 m³/m³

PROCAP Oil Flowrate Increase (%) Wells

Venturi X Orifice Gas Lift Valves

High Pressure X Conventional IPO Valve PROCAP 3000 Oil Flowrate Increase (%) **Poços**

Operational flexibility:

Reduce the number of GL valves

Prevent instabilities and severe slug

Easy way to start up the well

Single point injection in ultradeep well

New GL valves

- Venturi
- High pressure IPO
- Normally Open Valve
- Electric GL valve
- PETROBRAS Gas Lift Valve Test Site (Aracaju-SE)

Dynamic Performance and Endurance
Tests

Venturi type valves

- Intensively bench and field tested by Petrobras
- Standard valve in Petrobras deepwater wells
- Petrobras patented valve is being manufactured in Brasil

3000 psi Gas Lift Valve

- Developed under a Cooperation Agreement
- Allows deeper operation injection point
- Bench tested
- Field test: one valve is operating in Albacora field since July, 2003

PERFORMANCE TESTS

ENDURANCE TESTS

MARLIM

(Multiphase and Artificial Lift Modelling)

- In-house and continuous development
- Accurate Pressure and Temperature profiles prediction in multiphase flow
- Used to design and troubleshooting analysis
- Includes dynamic performance of GL valves

- Calculate transient temperature and pressure
 profiles (production and annular systems) in multiphase
- Useful for kickoff and design analysis with natural gas or nitrogen injection and including coiltubing if necessary
- Dynamic Performance of GL valves and chokes are included

Two softwares are being developed by Petrobras:

- FLOWLIFT with external consultant
- TRACELIFT specific presentation will be made at GL workshop

Goals:

- Optimization and automation of gas allocation per well
- Automatic instabilities control

➤ Specific presentation on the subject in this Workshop

- A low cost alternative for automation without depending on well intervention
- The optimum injection point me be inferred from the surface temperature
- Temperature is proportional to the flow rate (simulation result
 - Keep GL optimized all the time

rface temperature ree temperature uid flow rate

