

Understanding Multi Point Injection Advantages / Disadvantages

Dean Gordon ALRDC Gas Lift Workshop June 7th-11th 2021

Gas Lift provides one of two purposes

- 1. To reduce the flowing pressure in the tubing to produce more fluids from reservoir
- 2. To stabilize flowing pressure in the tubing commonly caused by "slugging" inflow from HZ section to tubulars

Continuous Flow Gas Lift

Gas lift increases the superficial gas velocity and changes the multiphase flow to a more stable flow regime.

Artificial Lift

What is Multi Pointing

- Gas lift injection through more than 1 valve
- PetroWiki defines as "when two or more gas lift valves are flowing gas at once"
- > API 19GLHB First edition does not define in it's glossary Terms & Definitions
- Most Multi Pointing gas lift wells have a stable Casing pressure trend

Artificial Lift

What causes Multi Pointing

- Lack of operating pressure differential
 - May cause changing / unstable flow patterns
- Port sizing inaccurate valve performance understanding
- Excessive gas injection what volume is required –Optimize
- Higher than designed for production rate (tubing friction pressure at depth)
- Higher than designed flowing temperature at valve depth (N2 IPO valve)
- Tubing sized to small for production rate / Casing size restrictions

Artificial Lif

- Lack of solid IPR development moving target in unconventional shale plays
 - Operations training understanding of critical velocity –higher performing wells
 - Conventional gas lift equipment inability to install efficient orifice valve at optimal injection depth – was wireline retrievable for decades
 - Improper unloading practices could be the #1 root cause for valve damage
 - Inaccurate surface production measurement LGR assumptions
 - Packer less completions repeated unloading's –susceptibility to valve leaks / valve fatigue
 - Unstable inflow –non uniform 3 phase flow –tubing fluid slugs
 - Tubing set depth 45 / 60 / 90 degrees
 - Results in slugging / surface heading wellhead chokes solution ???

Artificial Lift

Determination of Multi Pointing

- Flowing Pressure / temperature surveys
- Flowing spinner surveys
- DTS surveys (Distributed Temperature Sensing)
- CO2 or N2 tracer tests
- Diagnostics -VPC / DynaLift well simulation
- Gradient stimulation with matching fluid levels

Artificial Lift R&D Council

Advantages

- Cost savings on reduced wellbore
 - Tubing
 - Casing
 - Cement
 - Rig cost to pull frac string
 - Using conventional vs SPM equipment

Disadvantages

- Potential:
 - Decreased production
 - Excessive injection gas
- Damaged equipment
 - Unloading / startup
 - Valve chattering

This presentation will focus more on the gas lift valve performance aspect of multipoint gas injection Artificial Lift

Well Performance

Hydrodynamic slug flow occurs near HZ flow at lower velocities . Surges may completely disrupt movement into the pipe . When this happens alternating slugs of liquid and gas enter the tubing

8/19/2021

8

Artificial Lift

This is separate from two or more valves intermitting between themselves – historical use of term multi pointing (below)

Valve Interference

Trouble

Valve opening periodically on tubing pressure effect (Fig. 8).

Remedy

Correct wellbore problems that are restricting feed-in, or redesign gas-lift string for lower producing rate.

9

Intermitting / Multi Pointing

What we imagine Multi Pointing is or what it could be intermitting between valves 2000 feet apart

500 psig swing in FBHP

11

Artificial Lift

8/19/2021

1000 BLPD – injecting at possibly 3 separate depths What is injection volume required ?

FBHP range ~ 75 psig or 4% variance

13

Artificial Lift

FBHP range ~ 20 psig or .15 % variance

14

Valve at 4300 ft Gas passage range dependent upon temperature

Artificial Lift

Gas Injection volume range / velocity simulation 1000 BLPD

°a ⊕ |∞ • 🖪 ¼ • | 🤁 🗑 Φ ⊕ 🌮 🕍 🛱 🖶 🗛 | 🚿

Liquid Rate	Oil Rate	Water Rate	Formation Gas Rate	Injection Gas Rate	Water Cut	Produced GOR	Injection MD	Solution Node Pressure	Sens 1:Lift gas injection rate
(STB/d)	(STB/d)	(STB/d)	(MMSCF/d)	(MMSCF/d)	(Fraction)	(SCF/STB)	(ft)	(psig)	(MMSCF/d)
1000.00	400.00	600.00	0.64	0.00	0.6000	1600.01	8996.90	2311.93	0.00
1000.00	400.00	600.00	0.64	0.25	0.6000	2225.01	8996.90	2010.12	0.25
1000.00	400.00	600.00	0.64	0.50	0.6000	2850.01	8996.90	1873.78	0.50
1000.00	400.00	600.00	0.64	0.75	0.6000	3475.01	8996.90	1816.58	0.75
1000.00	400.00	600.00	0.64	1.00	0.6000	4100.01	8996.90	1792.42	1.00

Compare to Gas Lift Performance Curve - they may be different

Artificial Lift R&D Council

Pressure differential restricts depth of injection So well may be loaded below POI

17 8/19/2021

Depth of Injection related to changes in flowing conduit pressure

PWH=377 Rate=1000 GLR=1200 WC=60 %
PWH=377 Rate=2000 GLR=1000 WC=60 %
Static BHP = 4000 psi

18

Artificial Lift

1000 BLPD .188 ports

#	t TVD	MD	TV	TCF	Port	R	DPC	PT	PSC	PVC	OP	PSO	PD	PTRO	
	33777	1.			Size								@60F		
	(ft)	(ft)	(°F)		(in)		(psi)								
1	2 1700	1700	165	0.815	12	0.115	45	602	1080	1125	1193	1148	916	1035	
1	1 2950	2950	175	0.799	12	0.115	79	792	1062	1141	1186	1107	912	1030	
1	0 3800	3800	182	0.790	12	0.115	102	949	1041	1143	1168	1066	903	1020	Casing P c
	9 4300	4300	186	0.785	12	0.115	116	910	1022	1139	1168	1052	894	1010	
	8 4875	4875	190	0.780	12	0.115	133	907	1002	1135	1164	1032	885	1000	1060 psig
	7 5450	5458	193	0.775	12	0.115	149	904	981	1130	1160	1010	877	990	reopening
	6 6025	6039	196	0.771	12	0.115	166	901	959	1125	1154	988	868	980	rcopennis
	5 6600	6617	199	0.768	12	0.115	183	898	935	1119	1147	964	859	970	
	4 7175	7204	202	0.765	12	0.115	201	896	916	1117	1146	945	854	965	
	3 7750	7791	203	0.763	12	0.115	218	894	897	1115	1143	925	850	960	
	2 8325	8385	205	0.761	12	0.115	236	891	875	1111	1140	904	846	955	
	1 8900	8997			16	Orifice		871			1112				

Casing P can build to 1060 psig before reopening valve 10

TV : Temperature of Valve

TCF : Temperature correction Factor

R: Ap/Ab

DPC : Casing Press. at Depth - Casing Press. at Surface

PT : Tubing Pressure

PSC : Closing Pressure at Surface

PVC : Closing Pressure at Depth [PVC = PSC + DPC]

OP : Opening Pressure at Depth [OP = (PVC - PTR) / (1 - R)]

PSO : Suface Opening Pressure [PSO = OP - DPC]

PD AT F : Bellows Pressure at Base Temperature [PD AT F = TCF X PVC]

PTRO : Test Rack Opening Pressure [PTRO = (PD AT F) / (1 - R)]

19

1000 BLPD , injection restricted through valves at 7,8 and 9 Required 500 MSCF /dy injected through combination of valves

Artificial Lift

1000 BLPD .250 ports

#	TVD	MD	TV	TCF	Port	R	DPC	PT	PSC	PVC	OP	PSO	PD	PTRO
					Size								@60F	
	(ft)	(ft)	(°F)		(in)		(psi)							
12	1700	1700	165	0.815	16	0.186	45	602	1040	1085	1195	1150	884	1085
11	2950	2950	175	0.799	16	0.186	79	792	1022	1100	1171	1092	880	1080
10	3800	3800	182	0.790	16	0.186	102	949	1001	1103	1138	1036	872	1070
9	4300	4300	186	0.785	16	0.186	116	910	978	1094	1136	1020	859	1055
8	4875	4875	190	0.780	16	0.186	133	907	958	1091	1133	1000	851	1045
7	5450	5458	193	0.775	16	0.186	149	904	938	1087	1129	979	843	1035
6	6025	6039	196	0.771	16	0.186	166	901	916	1082	1124	957	835	1025
5	6600	6617	199	0.768	16	0.186	183	898	893	1077	1117	934	827	1015
4	7175	7204	202	0.765	16	0.186	201	896	875	1076	1117	916	823	1010
3	7750	7791	203	0.763	16	0.186	218	894	855	1074	1115	896	819	1005
2	8325	8385	205	0.761	16	0.186	236	891	835	1070	1111	875	815	1000
1	8900	8997			16	Orifice		871			1066			

Casing P can build to 1030 before reopening valve 10

TV : Temperature of Valve

TCF : Temperature correction Factor

R : Ap/Ab

DPC : Casing Press. at Depth - Casing Press. at Surface

PT : Tubing Pressure

PSC : Closing Pressure at Surface

PVC : Closing Pressure at Depth [PVC = PSC + DPC]

OP : Opening Pressure at Depth [OP = (PVC - PTR) / (1 - R)]

PSO : Suface Opening Pressure [PSO = OP - DPC]

PD AT F : Bellows Pressure at Base Temperature [PD AT F = TCF X PVC]

PTRO : Test Rack Opening Pressure [PTRO = (PD AT F) / (1 - R)]

21

1000 BLPD , injection through valves at 7,8 or 9 Required 500 MSCF /day - injected through combination of valves if temperature does not increase

Artificial Lift

22

Don't forget about Stem Travel ...

Effective stem travel is the amount the stem can move away from the seat within the linear portion of the loadrate curve.

Effective stem travel is a function of set pressure for valves with internally charged bellows. The higher the set pressure, the lower the effective stem travel

Stem Travel for a Full Open Port

23

Artificial Lift

Load Rate ...

Loadrate is a measure of the valve stem's resistance to movement. The nitrogen dome and bellows act like a spring. The pressure acting across the full area of the bellows required to compress the nitrogen and bellows is the loadrate. Loadrate is one of the MOST important gas lift valve performance parameters

Artificial Lift

Acknowledgements

- VPC Training Course -Decker technology
- Weatherford International plc.
- Seven Generations Resources (ARC)
- Gas Lift Handbook -API Recommended Practice 19GLHB First Edition ,June 2020

Artificial Lift

Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC) rights to:

- Display the presentation at the Workshop.
- Place it on the <u>www.alrdc.com</u> web site, with access to the site to be as directed by the Workshop Steering Committee.
- Links to presentations on ALRDC's social media accounts.
- Place it on an USB/CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.

Artificial Lift

Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-inafter referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.

27

Artificial Lift