Bubble Breaker*

Production enhancement in gaslifted or naturally producing wells with associated gas

Erik Schrama
Richard Fernandes
Shell

Development history

Phase	TRL	Description	When
D iscovery	0	0 pportunity identification	November 2001
	1	0 pportunity analysis	December 2001
	2	Selection most promising approach	January 2002
	3	Criticalrisk reduction	March 2002
	4	Feasibility dem o	May 2002
	5	Proofofconcept	July 2002
Developm ent	6	Test technology	Septem ber 2002
	7	Prototype	June 2003
	8	Tria ls	2004
Deploym ent	9	Deploym ent	2005

Working of Bubble Breaker

Break-up large bubbles and slugs into smalldispersed bubbles by inserting a wireline retrievable device in the tubing, which creates intense liquid turbulence.

Generated bubbles are so small that they hardly coalesce downstream of the bubble breaker

Vertical Lift Performance

Pressure loss is dom inated by hydrostatic head:

$$\Delta P \cong \rho_l \ (1 + \alpha) g h$$
Gashoblup

Highergashoblup = Lowerhydrostatichead = Lowerbottom holepressure = Higherproduction

Drift flux model

•The drift flux model relates the actual gas velocity to the center line velocity and the bubble rise velocity

$$\alpha = \frac{U_{sg}}{U_g} = \frac{U_{sg}}{C_0 U_m + U_b}$$

• Void fraction increases when C_0 and U_b are reduced

r 2001 SIEP B.V.

C₀: distribution parameter

Bubble rise velocity

Small bubbles

SM ALLER BUBBLES...

- ... have higher area-to-volume ratio. The slip of the gas phase is then lower, resulting in a longer residence time in the well.
- ... are more homogeneously distributed over the pipe cross-section.
- ... postpone the transition from bubbly to slug flow.

RESULT:

The gas hold up is increased, the bottom hole pressure reduced and production increased.

Modeling Results

Experiments in Shell-Rijswijk

Slow motion

Laboratory results

Copyright 2001 SIEP B

Sum m ary of experim ents

	W ithout bubble breaker	W ith bubble breaker
Bubble size	4-16m m	< 1m m
Bubble rise velocity U _b	25 cm /s	10 cm /s
Distribution parameter C ₀	0.8 and 1.2	1.0 and 1.2
Critical void fraction	15%	35-55%
Increase in void fraction		7%
Pressure loss		0.5 bar

Results Field trial

FGS

Rough estimates:

- Pressure reduced by ~ 2 bars
- •dP_{bb}= 1.8 bar (from model)
- •dFBH P= -0.2 bar (3 psi)
- •dQ = 150 bpd/psi*3 =
- + 450 bpd
- In line with model (+ 10%)

Summary

- Sm all bubbles are beneficial for gaslifted wells and naturally producing wells with associated gas
- A bubble breaker can be used to generate these small bubbles
- Concept is proven in laboratory
- First field trial shows promising results

Acknowledgements

- Richard Fernandes
- MichielVisser 'tHooft
- David Lee
- Jim Hall
- Jeanet Israel-Schouten and Maria Pena
- Nick Zdenkovic and Satinder Malik

Bubble size

Pressure loss over bubble breaker

$$\Delta P_{bb} = \phi^2 \frac{1}{2} K \rho_l U_l^2$$

Lockhart-Martinellicorrelation

Single phase pressure loss over the bubble breaker

Two-phase pressure bss over the bubble breaker

