The operation conditions are becoming more challenging.

In US +80% of the sucker rod failures are associated with Fatigue or Corrosion-Fatigue.
Corrosion Fatigue Resistant Sucker Rods
Development Premises

Operating Conditions
- Harsh environment, CO₂, H₂S, Chlorides
- High cyclic loads, temperature, pressure
- Water cut

Available options
- Standard industry steels
- Inhibition
- Lower strength material and oversized string design

+80% results in CF failures

R&D Inputs
- Develop a new series of Sucker Rods specially designed to:
 - Increased corrosion-fatigue resistance
 - Capable to handle high loads
 - Released at a market level price
Corrosion Fatigue Resistant Sucker Rods

Development Process: Steel Design

- **Ultra Clean Steel**
 - Highly controlled raw material
 - Low Residuals:
 - Low P
 - Limited S & O

- **Chemical Composition**
 - Low Carbon
 - Micro Alloying: Cr, Mo, Nb, B, Ti

- **Microstructure**
 - Resulted in:
 - Fine grain/packet size distribution
 - Fine precipitates with high spherical shape factor
 - Low dislocation density

- **Heat Treatment**
 - Full martensitic structure (95%)
 - Tempered Martensite
 - Fine Ferrite Grains
 - Very fine Carbides

AlphaRod™
Corrosion Fatigue Resistant Sucker Rods
Metallurgical Concept

Normalized and Tempered rods Standard Structure

AlphaRod™

- Full martensitic structure (95%)
- Tempered Martensite
- Fine Ferrite Grains
- Very fine Carbides

Perlite
Bainite

Sept. 12-15, 2017
2017 Sucker Rod Pumping Workshop
Corrosion Fatigue Resistant Sucker Rods
Microstructure - Standard Rod vs AlphaRod™

- **Standard Rod**
 - 500x Center
 - Grain size ~15 μm
 - 500x Surface

- **AlphaRod™ CS**
 - 500x Center
 - Grain size ~4 μm
 - 500x Surface

Sept. 12-15, 2017
2017 Sucker Rod Pumping Workshop
Corrosion Fatigue Resistant Sucker Rods
Metallurgy Effect

- Toughness
- Microstructure
- Fatigue Endurance Limit
- Corrosion Fatigue

Sept. 12-15, 2017

2017 Sucker Rod Pumping Workshop
Fracture toughness is a property which describes the ability of a material containing a crack to resist fracture.
Corrosion Fatigue Resistant Sucker Rods

Testing: Toughness

Increased toughness compared to Standard grades
Corrosion Fatigue Resistant Sucker Rods

Introduction to Fatigue Failures

Paris Law

- Region I: No Propagation
- Region II: Stable Crack Growth
- Region III: Rapid Crack Growth

Log (da/dn) = c(ΔK)^n

Transition
Low Crack Growth

ΔK_{th}

Log ΔK

Threshold

Nucleation
Crack growth
Final failure
Corrosion Fatigue Resistant Sucker Rods
Testing: Fatigue Nucleation and crack growth rate

Paris Law

Region I
No Propagation

Region II
Stable Crack Growth

Region III
Rapid Crack Growth

Transition
Low Crack Growth

\[\log(\frac{da}{dn}) = \log(c) + n \log(\Delta K) \]

\[\Delta K_{th} \]

Fatigue crack growth:
- Experim.; Best fit (Paris Law)
 - AlphaRodTM CS DS (4330M): \[\frac{da}{dN} = 9.82 \times 10^{-10} (\Delta K)^{3.28} \]
 - N&T 4330, Gr. D: \[\frac{da}{dN} = 2.84 \times 10^{-9} (\Delta K)^{3.18} \]

Threshold:
- Experim.; Best fit for threshold
 - AlphaRodTM CS DS (4330M): \(
 \Delta K_{th} = 9.46 \text{ MPa.m}^{0.5} \)
 - N&T 4330, Gr. D: \(
 \Delta K_{th} = 7.61 \text{ MPa.m}^{0.5} \)

Stress intensity factor range, \(\Delta K \) (MPa.m\(^{0.5}\))

25\% Increased Threshold
Corrosion Fatigue Resistant Sucker Rods

Introduction to Fatigue Failures

S-N curve
(Stress Applied vs. Cycles until Failure)
Corrosion Fatigue Resistant Sucker Rods
Testing: Fatigue Limit in Air

Improved fatigue resistance compared to Standard grades

Improved fatigue resistance compared to Standard grades
Corrosion Fatigue Resistant Sucker Rods

Lab test validation: Corrosion-Fatigue (CF)

CO₂

• Liquid Solution simulating formation water: pH~5.5
• **Gas: CO₂ + N₂**
• Temperature: 140F
• Pressure: 450psi
• **Partial Pressure CO₂: 145psi**
• **Loading: Mod Goodman @SF 1**
 ~150% D, ~85% UHS
• Cycling frequency 20 cycles/min
 (10 to 30 days each test)

H₂S

• Liquid Solution: pH~4.5
• **Gas: 100% H₂S**
• Temperature: 77F
• Pressure: 14psi
• **Partial Pressure H₂S: 14psi**
• **Loading: Smax=Mod Goodman @SF 1= ~150% D, ~85% UHS**
• Cycling frequency 20 cycles/min (10 to 30 days each test)
Mechanical Properties

- YS (0.2% offset): 110 Kpsi (758 MPa)
- UTS: 125 Kpsi (862 MPa)
- Elongation (2"): 10% Min
- Impact Toughness (CVN@20°C): 133 ft-lb (180 J)

Better Corrosion Fatigue Performance in CO₂

- 2x vs DA & KD
- 3x vs HS

The Best Corrosion Fatigue Performance in H₂S

- 4x vs KD & UHS
- 8x vs DA & MMS
Modified Goodman Diagram

Corrosion Fatigue Resistant Sucker Rods

AlphaRod™ can be found for simulation in SROD & RODSTAR (latest versions)

Or by using MMS or UHS rods @ SF 0.9

Standard grades

- API C 1530
- API K 4621
- API D 4142
- API DS 4320/30
- HS 4138 - HS 4330

AlphaRod™ grades

- AlphaRod™ CS

Graph

- **Smax (Ksi)**
- **Smin (Ksi)**

* Service Factor 1
AlphaRod™ Accessories are manufactured with the same **QUALITY Standards and SPECIFICATIONS** than AlphaRod™ Sucker Rods in order to reach the same **Microstructure and Corrosion Fatigue Performance**

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Size</th>
<th>Run life (days)</th>
<th>Corrosion Rate (gr/mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1"</td>
<td>136</td>
<td>147</td>
</tr>
<tr>
<td>AlphaRod™ CS</td>
<td>1"</td>
<td>112</td>
<td>17</td>
</tr>
</tbody>
</table>

Case Study:

88% **Corrosion Rate Reduction**

Sept. 12-15, 2017
2017 Sucker Rod Pumping Workshop
Corrosion Fatigue Resistant Sucker Rods
Field Validation

AlphaRod™ - Trial Wells

+70% of them already reach target and 10 of them triple previous run time

44 strings/tapers installed in US

Sept. 12-15, 2017

2017 Sucker Rod Pumping Workshop
Concluding Remarks

The new steel notably increases the run life in corrosive environments (CO$_2$, H$_2$S) at high loads (Capable of working up to Modified Goodman Diagram for HS @ SF 0.9).

AlphaRod™

6 years of R&D program

Steel Design
Lab Testing
Field Validation
Questions?

"The information in this electronic mail is not intended to constitute professional or any other type of advice and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information –if any- provided by petitioner in connection with, or for the purpose of, the information contained hereunder. Petitioner acknowledges and agrees that the use of the information is at user’s own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any information provided hereunder or the use thereof. Tenaris products and services are subject to the Company’s standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale, services or license, as the case may be. Unless specifically agreed under such contract of sale, services or license, if petitioner requires Tenaris to provide any warranty or assume any liability in connection with the information provided hereunder, any such warranty or liability shall be subject to the execution of a separate written agreement between petitioner and Tenaris. The information in this electronic mail is confidential and shall not be reproduced or disclosed in any form or by any means whatsoever, without prior permission from Tenaris. For more complete information please contact a Tenaris’s representative or visit our website at www.tenaris.com. ©Tenaris 2015. All rights reserved".
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.