DTS for Gas Lift Optimization

Loov, Robert; Gonzalez, Yosmar; Abouganem Stephens, Alberto

Schlumberger
Introduction

A standard mobile slick line unit and drum with the fiber-optic installed inside a 1/8 inch diameter cable was utilized for these surveys.

The main objective of these slickline deployed DTS surveys was to verify gas lift valve operation and performance in order to detect any possible anomalies.
Fiber Optic Slickline

- Fiber inside slickline is the measuring device
- Wire remains stationary
- 10 nanosecond bursts of laser light sent down the optical fiber
- Back-scatter to surface contains temperature related information
- Distributed temperature from the top of the well to the deployment depth of the line

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>> 0.1 deg C [0.18 deg F]</td>
</tr>
<tr>
<td>Resolution</td>
<td>~ 0.1 deg C [0.18 deg F]</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>1 m [3.28 ft]</td>
</tr>
<tr>
<td>Outer Diameter</td>
<td>3.18 mm [0.125 in]</td>
</tr>
<tr>
<td>Working pressure rating</td>
<td>103 MPa [15 kpsi]</td>
</tr>
<tr>
<td>Max. temperature rating</td>
<td>125 C [257F]</td>
</tr>
<tr>
<td>Anticorrosive material</td>
<td>Incoloy® alloy; H2S-corrosion resistant, 15%HCL</td>
</tr>
</tbody>
</table>
Data Display

Distributed Temperature Example

• Warm colors (yellow/red) represent higher temperature
• Cooling or cold temperatures shown as blue or blue-green curves
DTS Example: Case Study #1

2 Dimensional Temperature Data from DTS Data

- Traditional survey unable to accurately resolve lift/leak point(s)
- Production is unstable and “slugging” fluid to surface
- High fluctuations in injection pressure
DTS Example: Case Study #1

3 Dimensional DTS Data Plot

- **Final Diagnostic:** Multipoint Injection @ mandrel 5/7 (stable injection) & 7/7 (intermittent activity every 5 ms) combined with unstable flow conditions
- **Remedial Action:** GLV #5 & #7 changed out; Oil rate increased 600%; injection pressure stabilized/optimized
DTS Example: Case Study #2

Conventional Survey w/ Gauges

- Conventional survey indicated potential tubing leak uphole; client was going to pull tubing
- DTS survey concluded intermittent lifting from the lowest most valve
DTS Example: Case Study #2

• No leaks detected with DTS; temperature change associated with fluid level
• **Remediation:** Change out lowest most gas lift valve to a continuous injection valve

3 Dimensional DTS Data
DTS for Gas Lift Optimization

- DTS surveys can identify the operating valves if the well is operating in either a stable or unstable condition.
- Modelling can be used to see the magnitude of the expected steady state GLV effect at the operating valve and compare with the actual test results. Also, a pressure profile can be generated based on thermal simulation.
- A memory pressure gauge at the end of DTS string will aid in the gas lift design and optimization. It will assist with understanding the well performance with the current gas lift system and adjust or improve futures designs.
- An additional use for DTS is measuring the natural flowing temperature profiling using this information to predict gas-lift casing operating pressures for better lift design (source: SPE 181215)
Papers:

- SPE 154442: Slickline DTS Measurements Provide Useful Information for Well Integrity Diagnostics, Stimulation Treatments, and Water Injector Wells Performance: North America Land Case Studies
- SPE 181215: Identifying a Flowing Temperature Model for Gas Lift Designs in the Permian Basin
- SPE 114911: Real Time Well Diagnostic Using Slickline Fiber-Optic Distributed Temperature Sensors: West Venezuela Applications
- SPE 115816: Monitoring Inflow Distribution in Multi-zone, Velocity String Gas Wells Using Slickline Deployed Fiber Optic Distributed Temperature Measurements
- SPE 173640: Monitoring Acid Stimulation Treatments in Naturally Fractured Reservoirs with Slickline Distributed Temperature Sensing
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop and the Artificial Lift Research and Development Council (ALRDC) rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.