Liquid-Assisted Gas-Lift Unloading

Renato Coutinho
Paulo Waltrich
Introduction

• Lower Oil prices spur the industry to find **innovative techniques** to produce more for less money

• Gas-Lift is a well established technique, but it can be improved

• Gas-Lift operations are divided in:
 – Unloading
 – Production

• Two major unloading techniques:
 – **Single-point** gas injection
 – **Multiple-point** gas injection

\[p_{\text{inj}} = p_{\text{wh}} + \Delta p_{\text{GLV}} + \Delta p_f + (\bar{\rho}_{\text{tb}} - \bar{\rho}_{\text{an}}) gL \]
Introduction

Gas-Lift Unloading – Multiple Valves
Motivation

Multiple Valves

• Introduce potential leak points

Well Integrity

Single-point injection

Introduce potential leak points
Liquid-Assisted Gas-Lift Concept

\[p_{inj} = p_{wh} + \Delta p_{GLV} + \Delta p_f + (\rho_{tb} - \rho_{an})gL \]

- Starts to Inject Gas + Liquid
- Why?
 - Increase the density of the injection fluid
- The final goal: Inject 100% gas
Problem

Single-point gas injection: Requires *high injection pressure*

Multiple-point gas injection: Add *potential leak* points and *extra cost*

Objective

Evaluate the use of Liquid-Assisted Gas-Lift technique as an alternative to unload wells
Methodology

Outflow line
- Injection line
- Outflow line
- Closed Node
- Pressure Node (Return Line)
- Injection Line
- Annulus
- Tubing
- Section 1
- Section 2
- Section 3
- GLV

Promotional Transient Simulator
- **Commercial Transient flow simulator**
- **Fluids:** Water and Natural Gas
- **Section 1:** casing/tubing annulus
 - Casing ID: 4.88”
 - Tubing OD: 2.87”
- **Section 2:** production tubing
 - 2.788m vertical
- **Section 3:** gas-lift valve
- Reverse flow check valve
- Orifice Valve: 0.68”
- Compositional fluid model

LSU Test Well
- **P and T**
- **q_w**
- **q_g**

Introduction

- **Motivation**
- **Problem and Objective**

LAGL Concept

Methodology and Results

Conclusions
Results

Field Scale Well Test

- **$q_w = 50$ gpm**
- **$q_g = 5$ agpm**

\[P_{\text{inj, max}} \]

- **$q_w = 50$ gpm**
- **$q_g = 10$ agpm**

\[P_{\text{inj, max}} \]

- **$q_w = 50$ gpm**
- **$q_g = 20$ agpm**

\[P_{\text{inj, max}} \]

Gas Injection:

1,200 psig

Simulation

\[q_w = 50 \text{ gpm} \]
\[q_g = 5 \text{ agpm} \]

Experimental

\[q_w = 50 \text{ gpm} \]
\[q_g = 10 \text{ agpm} \]

\[q_w = 50 \text{ gpm} \]
\[q_g = 20 \text{ agpm} \]

GLR

$P_{\text{inj, max}}$

Results

\[p_{inj} = p_{wh} + \Delta p_{GLV} + \Delta p_f + (\rho_{tb} - \rho_{an})gL \]

\[q_g = 20 \text{ gpm} \]

Optimal Injection Interval

Introduction

Motivation

Problem and Objective

LAGL Concept

Methodology and Results

Conclusions
Results

Simulation
-
- \(q_g = 5 \text{ gpm} \)
- \(q_g = 10 \text{ gpm} \)
- \(q_g = 20 \text{ gpm} \)

Experiment
-
- \(q_g = 5 \text{ gpm} \)
- \(q_g = 10 \text{ gpm} \)
- \(q_g = 20 \text{ gpm} \)

Optimal injection interval

<table>
<thead>
<tr>
<th>Case #</th>
<th>(p_{\text{inj, max}})</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Results
Simulation – Well Unloading

Injection Pressure

Flow Rates (Injection)
- Water
- Gas

Water Volume
- Total (Annulus + Tubing)
- Annulus
- Tubing
Conclusions

• **LAGL** can significantly **reduce injection pressure** required in single-point unloading.

 ![Diagram](image)

 1,200 psig single-phase gas → 300 psig gas-liquid mixture

• The **simulation** results predicted $p_{\text{inj, max}}$ with errors lower than 15% when compared to the experimental data.

• The **simulation model was validated** with experimental data and can be used to optimize the LAGL application.
Acknowledgment:

- Jun Xu
- Parviz Mehdizadeh
- Stuart Scott
- Wayne Mabry
- Wesley Williams
Methodology

Two-Phase Flow through Orifice GLV - Flow Loop Test

Injection Pressure Max: 1,500 PSI

Gas and Liquid Injection
Preliminary Results
Two-Phase Flow through Orifice GLV - Flow Loop Test
Results
System Optimization

$q_g = 1.26 \text{ l/sec}$

$q_g (\text{gpm})$

$p_{inj} (\text{psig})$

- 0.69 inch
- 1.00 inch
- 2.00 inch

18% lower
Results

Field Scale Well Test

$q_w = 50 \text{ gpm}$
$q_g = 5 \text{ agpm}$

$q_w = 50 \text{ gpm}$
$q_g = 10 \text{ agpm}$

$q_w = 50 \text{ gpm}$
$q_g = 20 \text{ agpm}$

- Water Volume In (gal)
- Water Volume Out (gal)
- Unloaded Water (gal)

Volume (gal)
Time (sec)

Water Volume In (gal)
Water Volume Out (gal)
Unloaded Water (gal)

320 gal
260 ft

330 gal
570 ft

710 gal
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.