Dynamic Modeling of Hydraulically Operated Gas Well Dewatering Pumps

Ken Newman, P.E., Murray Raetz – Cormorant Engineering
Stephen DuBois, P.E. – Chesapeake Energy
Presentation Summary

- Single conduit dewatering pumps
- Through Tubing Pumps
- Through Casing Pumps
- Dynamic Modeling of Pump Systems
- Pump Installation Process
- Comparison of Model to Field Measurements
- Conclusions
Single Hydraulic Conduit Pumps
(Only requires 1 CT string with hydraulic fluid)

- Pressure applied to the hydraulic conduit causes pump to stroke upward
- Pressure released allows pump to stroke downward
- Density difference between pumped water and hydraulic fluid enables the down stroke
- Less expensive dewatering system due to single conduit
Through Tubing Pump

2 3/8” or 2 7/8” Tubing
- Uses existing tubing
- Single CT string filled with Hydraulic Fluid
- Water up the CT/Tubing Annulus
- Seats in tubing seating nipple
- 1 3/4” or 2 1/4” pump
- Inexpensive solution for low water rates
Through Casing Pump

2 3/8” through 3.5” OD

- Run on dual 1 ¼” FLATpak™ (consisting of two 1 ¼” CT strings)
- Hydraulic fluid in one CT string, water up the other
- Deeper or Higher Flowrate Applications
Dynamic Numerical Model

- Dynamic Simulation
- Finite Element in Space
- Finite Difference in time
- Considers:
 - Compressibility of fluids
 - Pressure losses in CT
 - Surface HPU
 - Pump response
- Inputs
 - Downhole pump piston sizes, stroke length, restrictions, friction
 - CT / FLATpak sizes
 - Fluid properties, viscosity, bulk modulus, density, n’, k’
 - Surface hydraulic power unit
 - max pressure, pump flowrate, accumulator volume, charge pressure, restrictions
Sample Model Output

- Hydraulic Fluid Pressure at Surface (psi)
- Water Pressure at Downhole Pump (psi)
- Water Flow Volume at Surface (gal)
- Hydraulic Fluid Flow Volume at Surface (gal)
- Volume of Hydraulic Fluid in Accumulator (gal)
- Hydraulic Fluid Pressure at Downhole Pump (psi)
- Piston Displacement (in/10)
Sample Model Output
Without Accumulator

- Hydraulic Fluid Pressure at Surface (psi)
- Water Pressure at Downhole Pump (psi)
- Water Flow Volume at Surface (gal)
- Hydraulic Fluid Flow Volume at Surface (gal)
- Piston Displacement (in/10)

Feb. 22-24, 2010
2010 Gas Well Deliquification Workshop,
Denver, Colorado
Sample Model Output
With 10 gal Accumulator

[Graph showing various pressure and volume measurements over time]
Engineering Test Facility
Used to Develop/Test Pump Systems and Validate Model
Pump and Hydraulic Power Unit
Attaching Pump to FLATpak
Run in Hole
Hang in Well
Water - Full Stroke!
2 3/8” Through Casing Pump
2800 ft, 86 deg, OK CBM Horz. Well

- Hydraulic Fluid Pressure at Surface (psi)
- Water Pressure at Downhole Pump (psi)
- Hydraulic Fluid Flow Volume at Surface (gal)
- Piston Displacement (in/10)
- Hydraulic Fluid Pressure at Downhole Pump (psi)
- Hydraulic Pressure from Field
- Water Flow Volume at Surface (gal)
- Volume of Hydraulic Fluid in Accumulator (gal)
Pressure Oscillations Correspond to Speed of Sound in Water Column
Gas in Water Column Reduces Bulk Modulus to 250 Kpsi
3 ½” Pump Through Casing 7,000 ft Near Vertical, Conventional

- Hydraulic Fluid Pressure at Surface (psi)
- Water Pressure at Downhole Pump (psi)
- Hydraulic Fluid Flow Volume at Surface (gal)
- Piston Displacement (in/10)
- Hydraulic Fluid Pressure at Downhole Pump (psi)
- Field Data
- Water Flow Volume at Surface (gal)
- Volume of Hydraulic Fluid in Accumulator (gal)
Conclusions

• A dynamic numerical model has been developed to model the performance of hydraulically operated dewatering pumps.

• Four pump systems have been built, tested and installed. Results from these systems have been used to modify and validate the model.

• Natural gas driven HPU currently being built.
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.