Casing Plunger Applications & Development

Robert McKee, P.E.
Design Engineer
Multi Products Company
Casing Plunger A.L. – Lift Without Tubing

- History of Development @ Multi-Products
- Unique Considerations
- Vertical Wells
- Horizontal Wells
- Case Studies
Casing Plunger – History of Development @ Multi Products

Original Purpose

- Extend life of older wells using “positive seal”

Expanded scope starting in 2007: High-Pressure Shale

- Developed pressure relief on plunger
- Operating depths increased to 10,000 ft.
- Surface equipment modified to accommodate pressure & plunger impact energy

Expanded into Horizontal Wells in 2009
Deliquification without Tubing

- Casing
 - Quality, uniformity
 - I.D. depends on “weight”, nominal vs. drift
- Positive Seal or Velocity Seal?
- Horizontal vs. Vertical wells
 - Standard technology on vertical
 - Limitations
- History of development
Positive Vs. Velocity Seal

Velocity Seal

a. Turbulent seal with gas jetting around the plunger.
b. Gas passing plunger *injects* the liquid column and creates bubble penetration.
c. Gas bubble expands with pressure drop and *slugs* liquid to the surface.
d. Plunger interface prevents liquid fall-back to the bottom of tubing. However,
e. Plunger will drop to bottom if flow rate reduced – requires sustained, high gas flow.

Positive Seal

a. Seals all gas below the plunger.
b. Lifts liquid column to the surface using formation pressure.
c. Provides Maximum lift from available pressure and volume.
d. No risk of plunger fall-back during lift. Gas pressure suspends plunger.
e. Can lift against variable line pressures & will not fall back, even if shut-in.
Vertical Wells

Basic Hardware Components
- Plunger & downhole equipment
- Surface equipment
- Sizes offered

Casing Size effect on lift capacity

Predictive Tools: BHP vs. fluid production, GLR, etc.

Marcellus Wells – shale gas
- Patented pressure relief design
- Control algorithm
JetStar™ Casing Plunger System

- No Tubing Required – Substantial Cost Reduction
- Patented System with Over 15 years in Field. Adapted for use in High Pressure Shale
- Lowest Cost Alternative to
 - Pump jacks – cost/maintenance
 - Gas lift – cost/maintenance
- Maintain low formation back-pressure for max. efficiency
- Baseline for move to horizontal wells
4½" JetStar™ Casing Plunger
Lift Capacity vs. Casing Size

- $\rho \sim 10\#/gal$ (Brine Water)
- Max. casing wt.
- Includes plunger wt.

![Graph showing lift capacity vs. casing size](image-url)

Positive Seal JetStar™ Casing Plunger
Barrels per Cycle @ Specific Pressure

- 5-1/2" X 17#
- 4 1/2" X 11.6#
- 3-1/2" X 9.2#
- 2-7/8" X 6.4#
Lift Capacity vs. Casing Size

- \(\rho \approx 10\#/\text{gal} \) (Brine Water)
- Max. Casing wt. (min. \(\varnothing \))
- Includes plunger wt.
Horizontal Casing Lift

Objectives for Development Project Started in 2009

• Casing plunger @ 4–½” x 11.6#
• Run plunger down to 60° (from vertical)
• Keep up with fluids produced
• Develop complete, automated lift system
• Lift any fluid
• For use in sand or gas frac. wells
Horizontal Casing Lift

Formation Back-Pressure Example

- Must reduce & keep it low to improve production
- Depends on:
 - Well bore
 - Fluid density
 - Fluid inflow
 - Curvature

Hydrostatic Pressure due to Fluid (using water grad .43)
Horizontal Casing Lift

- Fluid accumulates in bottom of casing
 - Gas flow substantially restricted
- Fluid is pushed out through a combination of
 - Waves
 - Spray
 - Slugs
- Must keep fluid from dropping out of plunger-active region on shut-in
 - Standing valve used at max. plunger range and doubles as plunger stop & activator
Horizontal vs. Vertical Casing Lift

- Non-vertical drop generates:
 - Mechanical friction
 - Lower effective weight (downward driving force)
 - Larger effective hydraulic forces
 - Wall contact that destroys sealing elements (cups)

- Upward Lift
 - Decreasing lift force with angle
 - Greater seal desired than descent \rightarrow configuration change

- Other Issues
 - Packers, curvature, casing uniformity
Horizontal Well Constraints

FRICTION – Why a “normal” plunger won’t work!

\[\mu = \tan(\Theta) \]

<table>
<thead>
<tr>
<th>Materials</th>
<th>Interface</th>
<th>(\mu)</th>
<th>(\Theta)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>steel</td>
<td>steel</td>
<td>dry</td>
<td>0.78</td>
<td>38</td>
</tr>
<tr>
<td>steel</td>
<td>teflon</td>
<td>n/a</td>
<td>0.04</td>
<td>3</td>
</tr>
<tr>
<td>steel</td>
<td>plastic</td>
<td>dry</td>
<td>0.35</td>
<td>19</td>
</tr>
<tr>
<td>steel</td>
<td>steel</td>
<td>oil</td>
<td>0.10</td>
<td>6</td>
</tr>
</tbody>
</table>
Horizontal Well Constraints

- Force (gravity) available to move plunger decreases as it travels downhole.
- Force (pressure) required to lift fluid increases as plunger comes uphole.

![Graph showing weight of fluid vs. angle.](image)
Horizontal Well Test Results

• Plunger operating max. proven depth @ 64°
• Brush interface: low friction but still needs flow-thru
• Liquid drops out quickly on shut-in – standing valve necessary to keep fluid in reachable zones.
• Casing quality may be degraded during completion
 – Plunger seals must conform to abnormalities
• Fluid levels difficult to measure
 – Must swab well at start or risk over-loading plunger
Horizontal Wells ~ Hardware Developed

Plunger
- Flow-through with valve
- Brush interface
- Pads

Downhole Equipment
- Standing valve & collar stop

Surface Equipment
- Lubricator & Controller
Horizontal Equipment Details

- Brush Plunger
- Standing Valve
- Collar Stop
- Jetstar™ Surface Equipment
Case Histories

Vertical Wells
- High-Pressure Wells @ 4-½" & 5-½" in PA
- New Well @ 4-½"
- Depleted Well @ 2-7/8" in TX
- Depleted Wells @ 4-½" in MT & OK

Horizontal Wells
- Devonian Shale #1 @ 4-½“ in KY
- Devonian Shale #2 @ 4-½“ in KY
Case #1~ Vertical Wells in Pennsylvania

• 12 installations (2 are 5-½"", the rest are 4-½""), July 2009
• Total Investment Payback = 47 days
• Total Gas Sales Increase = $32,400/mo.
Case #1~ Technical Summary

12 vertical wells with JetStar Casing Plungers

- Marcellus Shale
- $P_{\text{Rock}} \sim 2,500\text{psi}$
- $P_{\text{sales}} > 50\text{ psi}$
- 6,000 to 10,000 ft. casing stand setting depth
- 2 to 20 bbl/day brine water (frac. water flow-back)
- All wells originally on pump-jack
- Gas Flow prior to installation = 36.7 MCF/day (60d avg.)
- Gas Flow after installation = 52.1 MCF/day

- Average gas increase = 42%
Case #2 ~ New Vertical Well in Ohio

- Clinton Formation
- 4-½" x 10.5#
- $P_{\text{Rock}} \sim 600\text{psi after 24 hrs.}$
- $P_{\text{Sales}} > 60 \text{ psi, regulated by utility}$
- 2 bbl/d oil, 10% water
- 5 MCF/d avg. gas flow
- Plunger runs 1 cycle/day
- 6 hr shut-in & 45 min. open time, sold into utility lines
- Casing Stand set just above perfs. @ 3,100 ft.
Case #3 ~ Vertical Well in Texas

- Permian Basin
 - Lower Canyon Sands Play
- 2-7/8" x 6.4#
- $P_{\text{Rock}} \sim 400$ psi
- $P_{\text{sales}} > 100$ psi
- 1 bbl/day water
- ~2 cycles/day
- 6,560 ft.

2-7/8" Casing Plunger Evaluation

113 day Average
Production:
Pre-Installation-- 7 mcf/d
Post-Installation-- 13 mcf/d
Case #4~ Vertical Wells in OK & MT

- 4-⅛" x 10.5# Casing
- 19 wells in Oklahoma
 - 7 – 8 bpd w/ 20 – 30% oil cut
 - 7300 – 7400 ft. setting depth
 - Gas flow taken from 20-30 MCF/d to 50-60 MCF/d
- 2 wells in Montana
 - 2 – 4 bpd of produced water
 - 2000 – 2050 ft. setting depth
 - 25-30 MCF/d increased to 85 – 90 MCF/d
Case #5—Horizontal Well #1 in KY

- Devonian Shale
- Brush-QT Plunger
- 4-½" x 11.6#
- 55° @ 3,675 ft.
- P_{Rock} ~ 200 psi
- P_{sales} ~ 50 psi
- Pure oil
- < 5 bbl/week
- Production up 50%
Case #6 ~ Horizontal Well #2 in KY

- Brush-QT Plunger
- Devonian Shale
- $P_{\text{Rock}} \approx 300$ psi
- $P_{\text{sales}} > 50$ psi
- 4-½" x 11.6#
- 44° @ 3,097 ft.
- 2.5 bbl/d water
- 203% ↑ gas flow
- Foam frac’d
Conclusions

• Casing plunger technology:
 • Increases production substantially
 • Can be more economical than other options
 • Payback typically < 2 months
 • In addition to extending the life of older wells…
 • Has demonstrated safe application in
 • High-pressure vertical wells
 • Horizontal wells
 • Available for most casing sizes
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.