New Perspectives on Gas Well Liquid Loading & Unloading

Stefan Belfroid, TNO Science and Industry, Delft
Kees Veeken, Shell E&P Europe, Assen
Outline of Presentation

• Compare droplet size postulated by Turner against droplet size observed in nature and flow loop testing

• Recognise role of film reversal observed in flow loop experiments and transient multiphase flow modelling

• Explore consequences for gas well deliquification
 – Reduce droplet size
 – Generate swirl
 – Create foam
 – Modify tubing wall

• Summary
Droplet Size in Turner – *Big Rain*

- Turner criterion equates liquid loading to droplet reversal i.e. gas rate where friction drag force on droplet becomes less than gravity force on droplet

\[
\text{Force balance: } \pi D_p^3 \Delta \rho g / 6 = C_d \rho_g v_g^2 \pi D_p^2 / 8
\]

- Friction drag force depends on droplet size and shape

\[
\text{Drag force coefficient: } C_d = f(\text{Re,shape})
\]

- Turner assumes a droplet size based on a large critical Weber number \(\text{We} = 30 \)

\[
\text{Shear force Vs surface tension: } \text{We} = \rho_g v_g^2 / \sigma
\]

- Turner droplet size and \(\text{We} \) is much larger than typically observed in nature e.g. rain has \(\text{We} = 8 \)
Droplet Size in Flow Loop Tests

- Droplet size distribution has been measured in air-water flow loop testing using PDA (Particle Doppler Anemometry)

- 50% of water mass flow carried in droplet phase is smaller than 4 mm

- Maximum droplet size 10x P50 droplet size
Empirical Droplet Size

- Entrainment relation derived from lab data supports smaller critical We i.e. smaller droplets
Droplet Reversal?

- At Turner gas velocity realistic size droplets are not expected to cause liquid loading.
- Droplet reversal should only occur at $\frac{1}{2}$ of Turner gas rate.
- What is then causing liquid loading?

Diagram:
- **Turner assumes unrealistic droplet size**
- **Realistic droplets require lower velocity**

Equations:
- $F_{\text{Drag}} = F_{\text{Gravity}}$ (Downhole)
- $F_{\text{Drag}} = F_{\text{Gravity}}$ (Wellhead)
- Turner criterion (Downhole)
- Turner criterion (Wellhead)
Droplet Reversal?

- At Turner gas velocity realistic size droplets are not expected to cause liquid loading
- Droplet reversal should only occur at $\frac{1}{2}$ of Turner gas rate
- What is then causing liquid loading?

Busted

Droplet Reversal

- Turner assumes unrealistic droplet size
- Realistic droplets require lower velocity
Droplet and Film Movement

- Flow loop tests show that liquid is transported both by droplets up core and annular film up tubing wall

- Same air-water flow loop tests show that liquid loading is caused by film reversal
Film Reversal

- Film reversal model developed by Jos Van ‘t Westende (PhD Thesis TU Delft, 2008)

Air-water experimental*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>13 m/s</td>
</tr>
<tr>
<td>Turner</td>
<td>15 m/s</td>
</tr>
<tr>
<td>Film model</td>
<td>18 m/s</td>
</tr>
<tr>
<td>OLGA</td>
<td>17 m/s</td>
</tr>
</tbody>
</table>
Use of Turner Criterion

- Turner criterion remains extremely useful engineering tool: film and droplet reversal depend on the same well and fluid parameters in a similar manner.

- SPE 123657 introduces Modified Turner criterion, based on field data and in line with multiphase flow modelling results.
Film Reversal in OLGA

- Movement of and exchange between droplet and film included in OLGA multiphase flow modelling software
- OLGA specifies liquid transport in film and droplet phase

0 degrees deviation (75 bara, 0.1 m ID)
Vertical Well - 0.1 m ID - 50 bar FTHP

- **Q_{\text{min}}** = 130e3 m^3/d
 - at \(P_{\text{res}} = 67.25 \) bar

\(P_{\text{res}} \) decreases from 70 to 65 bar in 100 days.
Annular flow: droplet flow and film flow both important

\[P_{\text{res}} = 69.80 \text{ bar} \]

Gas \(= 0.184 \times 10^6 \text{ m}^3/\text{d} \)

Total water \(= 3.2 \text{ m}^3/\text{d} \)

Water film \(= 1.7 \text{ m}^3/\text{d} \)

Flow regime = Annular

Holdup = 0.007
Liquid loading starts when film flow “flips” i.e. changes from upward to downward, generally starts at

\[P_{res} = 67.40 \text{ bar} \]

- Holdup = 0.015
- Water film = 0.0 \(\text{m}^3/\text{d} \)
- Total water = 2.4 \(\text{m}^3/\text{d} \)
- Gas = 0.129e6 \(\text{m}^3/\text{d} \)
- Flow regime = Annular

Flow regime:

- HOL [-] (WELL) "HOLDUP (LIQUID VOLUME FRACTION)"
- ID [] (WELL) "FLOW REGIME INDICATOR"
- QGST [MSm³/d] (WELL) "GAS VOLUME FLOW AT STANDARD CONDITIONS"
- QLTWT [m³/d] (WELL) "VOLUMETRIC FLOW RATE WATER"
- QLWVT [m³/d] (WELL) "VOLUMETRIC FLOW RATE WATER FILM"
Downward film flow increases holdup and shifts holdup downward, increase of droplet flow upward partly compensates for film flow.

\[P_{\text{res}} = 67.25 \text{ bar} \]

- Gas = \(0.117 \times 10^6\) m\(^3\)/d
- Total water = 1.5 m\(^3\)/d
- Water film = -0.2 m\(^3\)/d
- Flow regime = Annular
- Holdup = 0.013
\(P_{\text{res}} = 67.25 \text{ bar} \)

At some point total water flow becomes downward.

- Holdup = 0.019
- Water film = 0.0 m\(^3\)/d
- Total water = 0.7 m\(^3\)/d
- Gas = 0.104e6 m\(^3\)/d
- Flow regime = Annular
- Holdup = 0.019

\(Q_{\text{GST}} [\text{m}^3/\text{d}] \) (WELL) "GAS VOLUME FLOW AT STANDARD CONDITIONS"

\(Q_{\text{LTWT}} [\text{m}^3/\text{d}] \) (WELL) "VOLUMETRIC FLOW RATE WATER"

\(Q_{\text{LWT}} [\text{m}^3/\text{d}] \) (WELL) "VOLUMETRIC FLOW RATE WATER FILM"
Reduce Droplet Size – *Into Thin Air*

- At small enough droplet size relaxation length will equal well depth.
- Small enough droplets could be generated by large shear forces i.e. very high gas velocities.
- Necessary choke size would result in excessive pressure loss defeating the purpose.

![Graph showing droplet diameter vs. gas velocity]
Droplet and Film Exchange

- Flow loop tests highlight the continuous exchange of liquid between film phase and droplet phase through deposition and entrainment.

- Droplet relaxation length is typically short for larger size droplets.
Droplet Relaxation Length

- Relaxation length Vs droplet diameter for ID = 0.1 m

\[n(x) = e^{-x/L_{rel}} \]

\(L_{rel} = \frac{\mu m}{100 m} \)
Reduce Droplet Size – *Into Thin Air*

- At small enough droplet size relaxation length will equal well depth
- Small enough droplets could be generated by large shear forces i.e. very high gas velocities
- Necessary choke size would result in excessive pressure loss defeating the purpose
Generate Swirl – *Let* *s* *Twist*

- **Spiral Flow = Helical Flow = Vortex Flow**
 - Norm Hein (2007 GWD Workshop, Denver)

- **Vortices have “memory” i.e. persist over extended time and distance (100-1000 D)**
 - Benefit observed both in lab testing and field applications
 - Improves film flow rather than droplet flow
 - Promising as temporary measure e.g. while waiting for compression
 - May require multiple tools to cover tubing length depending on relaxation length

Generate Swirl – *Let's Twist*

- Spiral Flow = Helical Flow = Vortex Flow
 - Norm Hein (2007 GWD Workshop, Denver)
- Vortices have “memory” i.e. persist over extended time and distance (100-1000 D)
 - Benefit observed both in lab testing and field applications
 - Improves film flow rather than droplet flow !
 - Promising as temporary measure e.g. while waiting for compression
 - May require multiple tools to cover tubing length depending on relaxation length

Create Foam – *Tall Tale*

- Stable foam requires liquid content between 10% and 40%, foam breaks up and turns into mist @ liquid fraction less than 4% (SPE 86927)
- Liquid fraction in wellbore rarely exceeds 1%, hence stable foam columns do not exist in wells
- Lower surface tension (2x-3x) reduces droplet size, increases entrainment and increases velocity of film roll waves
Create Foam – *Tall Tale*

- Stable foam requires liquid content between 10% and 40%, foam breaks up and turns into mist @ liquid fraction less than 4% (SPE 86927)
- Liquid fraction in wellbore rarely exceeds 1%, hence stable foam columns do not exist in wells
- Lower surface tension (2x-3x) reduces droplet size, increases entrainment and increases velocity of film roll waves
Modify Tubing – *Die Zauberflöte*

- Apply hydrophilic of hydrophobic coating
 - Small scale lab tests show promising effects

Fig. 7. Typical churn flow images in test pipes ($\langle j_g \rangle = 3.3 \text{ m/s}$, $\langle j_f \rangle = 0.3 \text{ m/s}$).
Modify Tubing – *Die Zauberflöte*

- Apply ID profile
 - Small scale lab tests show promising effects

Fig. 8. Typical annular flow images in test pipes ($\bar{j}_g = 10 \text{ m/s}$, $\bar{j}_l = 0.10 \text{ m/s}$).
Modify Tubing – *Die Zauberflöte*

- Modify tubing wall to delay film reversal
 - Small scale lab tests show promising effects
- Apply hydrophilic of hydrophobic coating
 - Small scale lab tests show promising effects
- Apply ID profile (small scale – large scale)
 - Small scale lab tests show promising effects

Promising

Fig. 7. Typical churn flow images in test pipes \((\dot{V}_L = 3.3 \text{ m/s}, \dot{V}_H = 0.3 \text{ m/s})\).

Fig. 8. Typical annular flow images in test pipes \((\dot{V}_L = 10 \text{ m/s}, \dot{V}_H = 0.10 \text{ m/s})\).
Summary

- Droplet size assumed by Turner is much larger than observed in flow loop tests.
- Flow loop tests and multiphase modelling indicate that liquid loading is caused by flow reversal rather than droplet reversal.
- Therefore deliquification must delay film reversal rather than droplet reversal.
- Droplet size reduction could help, but is impractical due to associated pressure loss.
- Swirl generation could help, may require installation at multiple depths.
- Surfactant injection helps, but mechanism may be different than assumed.
- Tubing wall modification could help, under investigation.
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.