Real Time Optimization of Gas Lifted Asset using Integrated Production Model

Ashok Dixit, Product Line Manager
Weatherford International, Houston
Outline

- Integrated Production Model
- Challenges in Optimization of Gas Lifted Asset using Integrated Model
- Adoption of Integrated Model for Real Time Optimization
- Real Time Optimization Solution
- Conclusions
Production Optimization

Single Well Optimization

• Well Modeling Software
 – Nodal Analysis
 – Gas Lift Design and Analysis

Full Field Optimization

• Integrated Production Model
 – Reservoir
 – Well
 – Surface Facilities
Well Modeling Application

Reservoir Pressure
Gas Oil Ratio (GOR)
Water-cut
IPR Data

Naturally Flowing Well

Gas Lifted Well
THP = 100 psia
THP = 200 psia
THP = 300 psia

Qoil, STB/day
Qgi, MMScf/day

Surface Network Application

Integrated Production Model
Challenges in Field Optimization

Well Performance Data

• Naturally Flowing Well
 – Single Curve => Q_{oil} vs THP

• Gas Lifted Well
 – Performance Surface
 • Q_{oil} vs Q_{gi} for range of Tubing Head Pressures
 – Casing Head Pressure Corresponding to Q_{gi}
 • Advanced Gas Valve Modeling (AGVM)
 – Minimum Kick off Rate
Challenges in Field Optimization

Feb. 2 - 6, 2009

2009 Gas-Lift Workshop
Challenges in Field Optimization

Availability of Lift Gas

• Quantity
 – Separator Train Configuration
 • Number of Stages
 • Pressure and Temperature

• Pressure
 – Compressor Station Configuration
 • Number of Compressor Stages
 – Surge and Stonewall limits
 • Turbine
 – NHV of Gas
Challenges in Field Optimization
Challenges in Field Optimization

Optimizer

- **Objective**: Maximize Revenue
 - Maximize Production and Minimize Cost
 - Optimum Distribution of Available Lift Gas
 - Compressor Performance
 - Minimize Recycled Gas between Compressor Stages

- **Solver**
 - Closed Loop Optimization
 - Recycle Loops
 - *Simultaneous Simulation and Optimization*
Optimization Methodology

Tune Individual Well Models

- Production Well Test Data, Flowing Gradient Survey
 - IPR Model
 - Flow Correlation

Tune Surface Network Model

- Production Data, Manifold Pressures and Temperatures, Separator Pressures and Temperatures
 - Choke Model
 - Flow Correlation
 - Heat Transfer Coefficient
 - Separator Entrainment Factors
Optimization Scenarios

• Gas Lift Allocation
• Bottlenecks in Production / Injection Network
• Optimum Separator Pressures and Temperatures
• Optimum Flow in Parallel Flowline
• Various “What-if” Scenarios
• SPE 101089 : Presented in SPE AP Conf in Sept 2006
Real Time Production Optimization

• Morning Meeting
 – Discussion about Overall Production

• Production Related Issues
 – Well and Field Optimization
 – Regular Use and Maintenance of Various Spreadsheets
 – Best Utilization of Real Time Data
 – Engineers using applications in a standalone mode for offline optimization
 – Limited on-line information

• Solution??
Real Time Optimization Application: Requirements

- **Tune Well and Surface Network Model Automatically**
 - Linked Historian and SCADA

- **Visualization of Real Time Data**
 - For Trending and Identifying Anomalies

- **Analysis and Utilization of Real Time Data Using Engineering Application**
 - Field Optimization & Management, Forecasting

- **Web Application**
 - Results Available to Experts Anywhere in the World
Online Deployment

Real Time Solution

Server

- Production Data Management
- Network Model and Optimizer
- Reservoir Models
- Economic Parameters
- Well Perf Curves
- Well Models
- Pressure Transient Analysis
- Review, Approval

Production Tests

Targets

LAN/WAN/Internet/Intranet

Web Client

Engineer PCs

Completed
Production Reservoir

Data

SCADA Historian

Expired Data

Conditions, Status

Real-time Data

Historical Data

Optimized Set-points

Results

SCADA Server

Corporate Database

Data

Data
Well Test Report: Last 24 Hours

Production Well Tests in Last 24 Hours

<table>
<thead>
<tr>
<th>Wells Name</th>
<th>Summary</th>
<th>Status</th>
<th>Test Date</th>
<th>Rejected</th>
<th>Wellhead Pressure (psia)</th>
<th>Wellhead Temperature (deg F)</th>
<th>Oil Rate (STB/day)</th>
<th>Water Rate (STB/day)</th>
<th>Gas Rate (MMscf/day)</th>
<th>GPM (scf/STB)</th>
<th>Watercut (Fraction)</th>
<th>OIL (scf/STB)</th>
<th>Causing Head Pressure (psia)</th>
<th>Lift Gas Rate (MMscf/day)</th>
<th>Liquid Productivity Index (STB/day)</th>
<th>Bottom Hole Pressure (psia)</th>
<th>Reservoir Pressure (psia)</th>
<th>Choke Size (1/32 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-02</td>
<td>None</td>
<td>Passed</td>
<td>09/03/2008 12:00</td>
<td>Yes</td>
<td>332.2</td>
<td>163</td>
<td>804</td>
<td>441</td>
<td>0.75</td>
<td>937</td>
<td>0.34</td>
<td>820</td>
<td>2207</td>
<td>3.36</td>
<td>1453</td>
<td>3553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-02</td>
<td>None</td>
<td>Passed</td>
<td>02/07/2008 01:00</td>
<td>Yes</td>
<td>455.0</td>
<td>105</td>
<td>1900</td>
<td>290</td>
<td>2.00</td>
<td>1655</td>
<td>0.10</td>
<td>933</td>
<td>835</td>
<td>4.85</td>
<td>1392</td>
<td>4745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-03</td>
<td>None</td>
<td>Passed</td>
<td>09/12/2007 01:00</td>
<td>No</td>
<td>543.3</td>
<td>136</td>
<td>904</td>
<td>483</td>
<td>7.34</td>
<td>1235</td>
<td>0.45</td>
<td>858</td>
<td>1376</td>
<td>6.17</td>
<td>2543</td>
<td>5313</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Injection Well Tests in Last 24 Hours

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Summary</th>
<th>Status</th>
<th>Test Date</th>
<th>Injected</th>
<th>Wellhead Pressure (psia)</th>
<th>Wellhead Temperature (deg F)</th>
<th>Sub. Injection Rate (MMscf/day)</th>
<th>Water Injection Rate (STB/day)</th>
<th>Inj. Activity Index (STB/day)</th>
<th>GPM Flow Coefficient (scf/STB)</th>
<th>Bottom Hole Pressure (psia)</th>
<th>Reservoir Pressure (psia)</th>
<th>Pumping Pressure (psia)</th>
<th>Choke Size (1/32 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-01</td>
<td>None</td>
<td>Passed</td>
<td>14/03/2008 00:00</td>
<td>No</td>
<td>4885.0</td>
<td>97</td>
<td>2.00</td>
<td>2583</td>
<td>3752</td>
<td>1986</td>
<td>4863</td>
<td>8142</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>D-02</td>
<td>RMP X P rate</td>
<td>Failed</td>
<td>14/03/2008 00:00</td>
<td>No</td>
<td>6668.0</td>
<td>115</td>
<td>2631</td>
<td>206375373</td>
<td>5861</td>
<td>4863</td>
<td>8142</td>
<td>47</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

Network report: Field 2 29/01/2009 16:00

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Oil Rate (STB/day) (Allocation)</th>
<th>Oil Rate (STB/day) (Used)</th>
<th>Oil Rate (STB/day) (Test scenarios)</th>
<th>Actual (STB/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP Oil Export</td>
<td>60000</td>
<td>60000</td>
<td>60001</td>
<td>56984</td>
</tr>
<tr>
<td>HP Oil Export</td>
<td>57502</td>
<td>54462</td>
<td>51846</td>
<td>56597</td>
</tr>
<tr>
<td>Totals</td>
<td>117502</td>
<td>114462</td>
<td>121046</td>
<td>115189</td>
</tr>
</tbody>
</table>
Well Test Details

- **Well name:** A-02
- **Test Start Time:** 09/03/2008 12:00:00

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellhead Pressure</td>
<td>332 psia</td>
</tr>
<tr>
<td>Oil Rate</td>
<td>804 STB/day</td>
</tr>
<tr>
<td>Water Rate</td>
<td>411 STB/day</td>
</tr>
<tr>
<td>Gas Rate</td>
<td>0.75 MScf/day</td>
</tr>
<tr>
<td>Casing Head Pressure</td>
<td>2207 psia</td>
</tr>
<tr>
<td>Lift Gas Injection Rate</td>
<td>3.36 MMcfd</td>
</tr>
<tr>
<td>Motor Frequency</td>
<td>*** Hz</td>
</tr>
<tr>
<td>Office Size</td>
<td>18 1/4in</td>
</tr>
<tr>
<td>Min Stable QSI</td>
<td>1.36 MMcfd/day</td>
</tr>
<tr>
<td>Wellhead Temperature</td>
<td>103 deg F</td>
</tr>
<tr>
<td>Oil Gravity</td>
<td>*** sp grav</td>
</tr>
<tr>
<td>Gas Gravity</td>
<td>*** sp grav</td>
</tr>
<tr>
<td>Water Salinity</td>
<td>*** ppm</td>
</tr>
<tr>
<td>Gauge Pressure</td>
<td>1424 psia</td>
</tr>
<tr>
<td>DIP</td>
<td>1453 psia</td>
</tr>
</tbody>
</table>

Recalibration Method:
- PI Recalibration of well A-02 passed
- Recalibrated gas lift valve for well A-02

PI
- **L Factor:** 1
- **PI:** 0.74 STB/day/psia
- **Reservoir Pressure:** 3553 psia
- **FI (secondary):** 1.00 STB/day/psia
- **Reservoir Pressure (secondary):** 3038 psia

Well type: Gas Lifted

Detailed Well Test Report

Feb. 2 - 6, 2009 2009 Gas-Lift Workshop
Location of Well Test on Well Performance Surface
Trending of Tuning Parameters
Tracking of IPR Curve
Daily Monitoring using Real Time Data

![Image of Well Measurement Report]

Table of Well Measurements

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Well Name</th>
<th>Tubing Head Pressure (THP) measured (psig)</th>
<th>Lift Gas Rate (Qg) measured (MMscf/day)</th>
<th>Casing Head Pressure (CHP) measured (psig)</th>
<th>Casing Head Pressure (CHP) calculated (psig)</th>
<th>Oil Production Rate (Qo) calculated (STB/day)</th>
<th>Gas Production Rate (Qg) calculated (MMscf/day)</th>
<th>Water Production Rate (Qw) calculated (STB/day)</th>
<th>Measured Temperature (deg F)</th>
<th>Choke Size (1/16 in)</th>
<th>Choke Deviation (psia)</th>
<th>Flowing Time (hrs)</th>
<th>% Chp Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/10/2007</td>
<td>A-02</td>
<td>579.3</td>
<td>6.09</td>
<td>4364</td>
<td>4746</td>
<td>1406</td>
<td>7.78</td>
<td>1099</td>
<td>-461</td>
<td>-2520</td>
<td>582</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>01/10/2007</td>
<td>A-02</td>
<td>579.3</td>
<td>6.09</td>
<td>4364</td>
<td>4746</td>
<td>1406</td>
<td>7.78</td>
<td>1099</td>
<td>-461</td>
<td>-2520</td>
<td>582</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>02/10/2007</td>
<td>A-02</td>
<td>571.7</td>
<td>6.16</td>
<td>4570</td>
<td>4637</td>
<td>1387</td>
<td>7.12</td>
<td>1077</td>
<td>-461</td>
<td>-2520</td>
<td>352</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>03/10/2007</td>
<td>A-02</td>
<td>612.6</td>
<td>6.41</td>
<td>4002</td>
<td>5055</td>
<td>1419</td>
<td>6.11</td>
<td>1110</td>
<td>-461</td>
<td>-2520</td>
<td>457</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>04/10/2007</td>
<td>A-02</td>
<td>594.9</td>
<td>6.14</td>
<td>4306</td>
<td>4670</td>
<td>1306</td>
<td>7.07</td>
<td>1069</td>
<td>-461</td>
<td>-2520</td>
<td>582</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>05/10/2007</td>
<td>A-02</td>
<td>535.4</td>
<td>5.68</td>
<td>4233</td>
<td>4098</td>
<td>1267</td>
<td>6.99</td>
<td>1069</td>
<td>-461</td>
<td>-2520</td>
<td>213</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>06/10/2007</td>
<td>A-02</td>
<td>547.1</td>
<td>5.54</td>
<td>4270</td>
<td>4005</td>
<td>1266</td>
<td>6.90</td>
<td>1058</td>
<td>-461</td>
<td>-2520</td>
<td>164</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>07/10/2007</td>
<td>A-02</td>
<td>561.9</td>
<td>5.47</td>
<td>4293</td>
<td>4098</td>
<td>1266</td>
<td>6.70</td>
<td>1058</td>
<td>-461</td>
<td>-2520</td>
<td>213</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>08/10/2007</td>
<td>A-02</td>
<td>556.4</td>
<td>5.25</td>
<td>3539</td>
<td>3026</td>
<td>1404</td>
<td>5.85</td>
<td>1028</td>
<td>-461</td>
<td>-2520</td>
<td>582</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>09/10/2007</td>
<td>A-02</td>
<td>548.8</td>
<td>5.08</td>
<td>3462</td>
<td>3857</td>
<td>1353</td>
<td>5.70</td>
<td>1056</td>
<td>-461</td>
<td>-2520</td>
<td>352</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>10/10/2007</td>
<td>A-02</td>
<td>535.4</td>
<td>5.04</td>
<td>3539</td>
<td>3026</td>
<td>1404</td>
<td>5.85</td>
<td>1028</td>
<td>-461</td>
<td>-2520</td>
<td>582</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>11/10/2007</td>
<td>A-02</td>
<td>547.8</td>
<td>4.97</td>
<td>3991</td>
<td>4263</td>
<td>1377</td>
<td>7.12</td>
<td>1074</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>12/10/2007</td>
<td>A-02</td>
<td>555.4</td>
<td>5.25</td>
<td>3991</td>
<td>4263</td>
<td>1377</td>
<td>7.12</td>
<td>1074</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>13/10/2007</td>
<td>A-02</td>
<td>562.5</td>
<td>5.03</td>
<td>3991</td>
<td>4161</td>
<td>1371</td>
<td>7.07</td>
<td>1072</td>
<td>-461</td>
<td>-2520</td>
<td>161</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>14/10/2007</td>
<td>A-02</td>
<td>557.0</td>
<td>5.03</td>
<td>4360</td>
<td>4692</td>
<td>1403</td>
<td>7.71</td>
<td>1099</td>
<td>-461</td>
<td>-2520</td>
<td>322</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>15/10/2007</td>
<td>A-02</td>
<td>540.1</td>
<td>4.98</td>
<td>4325</td>
<td>4214</td>
<td>1377</td>
<td>7.12</td>
<td>1074</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>16/10/2007</td>
<td>A-02</td>
<td>550.4</td>
<td>5.08</td>
<td>4509</td>
<td>4436</td>
<td>1378</td>
<td>7.40</td>
<td>1085</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>17/10/2007</td>
<td>A-02</td>
<td>549.9</td>
<td>4.92</td>
<td>4509</td>
<td>4436</td>
<td>1378</td>
<td>7.40</td>
<td>1085</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>18/10/2007</td>
<td>A-02</td>
<td>553.4</td>
<td>5.12</td>
<td>4907</td>
<td>3892</td>
<td>1355</td>
<td>6.74</td>
<td>1056</td>
<td>-461</td>
<td>-2520</td>
<td>641</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>19/10/2007</td>
<td>A-02</td>
<td>560.1</td>
<td>5.08</td>
<td>4325</td>
<td>4214</td>
<td>1377</td>
<td>7.12</td>
<td>1074</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>20/10/2007</td>
<td>A-02</td>
<td>557.0</td>
<td>5.03</td>
<td>4360</td>
<td>4692</td>
<td>1403</td>
<td>7.71</td>
<td>1099</td>
<td>-461</td>
<td>-2520</td>
<td>322</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>21/10/2007</td>
<td>A-02</td>
<td>540.1</td>
<td>4.98</td>
<td>4509</td>
<td>4436</td>
<td>1378</td>
<td>7.40</td>
<td>1085</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>22/10/2007</td>
<td>A-02</td>
<td>550.4</td>
<td>5.08</td>
<td>4509</td>
<td>4436</td>
<td>1378</td>
<td>7.40</td>
<td>1085</td>
<td>-461</td>
<td>-2520</td>
<td>1111</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>23/10/2007</td>
<td>A-02</td>
<td>549.9</td>
<td>4.92</td>
<td>4907</td>
<td>3892</td>
<td>1355</td>
<td>6.74</td>
<td>1056</td>
<td>-461</td>
<td>-2520</td>
<td>641</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>24/10/2007</td>
<td>A-02</td>
<td>553.4</td>
<td>5.12</td>
<td>4907</td>
<td>3892</td>
<td>1355</td>
<td>6.74</td>
<td>1056</td>
<td>-461</td>
<td>-2520</td>
<td>641</td>
<td>24</td>
<td>10</td>
</tr>
</tbody>
</table>
Visualization of Optimization Results
Conclusions

• The typical optimization methodology for gas lifted well / asset is comprised of
 – Single Well Optimization
 – Full Field Optimization using Integrated Model
 – Real Time Optimization using Online Solution

• The online solution helps in reducing manual task by facilitating automatic tuning of integrated model.

• The tuned integrated model could be employed for production allocation, target monitoring, optimum choke and separator settings, etc.
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.